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TENSILE BEHAVIOR OF TUNGSTEN/NIOBIUM COMPOSITES AT 1300 TO 1600 K
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Lewis Research Center
Cleveland, Ohio

Abstract

The tensile behavior of continuous-tungsten-fiber-reinforced niobium com-
posites (W/Nb), fabricated by an arc-spray process, was studied in the
1300 to 1600 K temperature range. The tensile properties of the fiber and
matrix components as well as of the composites were measured and were com-
pared to rule of mixtures (ROM) predictions. The deviation from the ROM
was found to depend upon the chemistry of the tungsten alloy fibers, with
positive deviations for ST300/Nb (i.e., stronger composite strength than
the ROM) and negative or zero deviations for 218/Nb.




LIST OF SYMBOLS
opL proportional limit
opL, fl proportional limit of fiber 1
opL, f2 proportional limit of fiber 2
(opL)c proportional limit of composites
(opL)cal calculated proportional limit of composites

(CPL)exp experimentally measured proportional limit

of tensile stress of the fiber

o tensile stress of the matrix

Ve volume fraction of the fiber

Vin volume fraction of the matrix

Gr shear modulus of the fiber

G shear modulus of the matrix

Ao matrix strengthening

oM, m Brown's mean stress

oc composite strength

oc” composite strength calculated by the modified ROM
gcS*P composite strength measured experimentally
oCROM composite strength calculated by the ROM
€1 strain at the yield point of fiber 1

€9 strain at the yield point of fiber 2

€p accumulated plastic strain

Introduction

Continuous fiber reinforced metal matrix composites are attractive mater-
ials in applications where high strength at high temperatures is desired.
The high-temperature stability of these composites is believed to be supe-
rior to that of discontinuous fiber composites. In addition, the mechani-
cal properties of axially reinforced composites can be modeled easily
because of the uniform distribution of an externally applied load in a
plane normal to the fiber direction. The rule-of-mixture (ROM) method gen-
erally can be used to predict the mechanical behavior of composites, if we
make two assumptions: (1) that no shear stress is transferred from the
matrix to the fiber, and (2) that the strain is distributed homogeneously
between the fiber and matrix (Ref. 1).
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TABLE I. - CHEMICAL COMPOSITION OF COMPOSITE CONSTITUENTS (at %)

Materials | ThOg K W Nb 0 C N
at %
ST300 I balance | —————= | ———— | ————— | ——————
218 ———— | bg.38 | balance | ————-oe | —mmom | mmm | o
Nb el Bt E balance | 40.27 | 80.11 | 20.041

dTrace elements O, C and N were analyzed after arc-spraying of niobium
wires to form the composite matrix.
bTaken from (Ref. 6).

A limitation to the use of the ROM has been observed in room-temperature
tensile properties of tungsten and copper composites, where residual stres-
ses (Refs. 2 and 3), matrix strengthening (Ref. 4), and lateral stresses
(Ref. 4) were observed, resulting in a deviation from the ROM prediction.
At high temperatures, the deviation may be greater, and the mechanisms
causing it more complicated. In the present study, tungsten fiber rein-
forced niobium matrix (W/Nb) composites were tested in tension in the tem-
perature range 1300 to 1600 K. Results were evaluated using the ROM and
interpreted in terms of fiber degradation and/or matrix strengthening.

Experimental Procedures

Materials

Table I shows the chemical compositions of the constituents examined in
this work. The 218 wire is strengthened by potassium-filled bubbles, and
the ST300 wire is strengthened by 1.0 at % thoria. Both wires were pur-
chased in the "cleaned and straightened" (CS) condition with a nominal
diameter of 200 um. All of the unidirectional fiber composite materials.
as well as the unreinforced niobium (Nb) matrix material, tested in this
study were fabricated using an arc-spray process with uniform processing
parameters (Ref. 5).

Mechanical Property Testing

Pin and clevis thin-sheet specimens (Fig. 1) with the longitudinal direc-
tion parallel to the fiber axis were made from composite panels by
electric discharge machining (EDM). Tungsten reinforcing tabs were
electron-beam welded onto the specimen ends (Fig. 1) to prevent pin pull-
out during testing. Tensile testing of the sheet specimens was conducted
in a vacuum of about 1079 Pa at temperatures from 1300 to 1600 K. Tensile
property measurements were carried out in a universal testing machine oper-
ated at crosshead speeds of 0.00085 to 0.85 mm/sec. This would correspond
to strain rates of 3.3x1079 to 3.3x10~2 sec~!, based upon the assumption
that deformation took place only in the 25.4 mm-gauge section. Tensile
strength of the wires was measured on the as-drawn and electropolished
wires. Details of the wire tensile tests were described previously

(Refs. 5 and 6). Due to the high temperature and high vacuum it was not
possible to use an extensometer to measure strain. Therefore, the tensile
strengths and proportional limits were determined from load versus time
curves. 3




Results

Tensile Behavior of Tungsten-Niobium Composi

tes and of Niobium Matrix

Material

Figure 2 shows the stress-displacement behavior of the composite and the

niobium matrix specimens tested at 1600 K at
speeds.
0.33 as determined by counting the number of
examination of the specimen cross sections.
sile stress values throughout this report we
fiber volume fraction of 0.33 by the simple

three different crosshead

The fiber volume fraction of the composites varied from 0.31 to

fibers during metallographic
For ease of comparison, ten-
re normalized to a constant
relationship, og = (og'/VE")

x Vg, where og

og' and Vg’
respectively.

is the normalized stress at the

127.0

V¢ value of 0.33, and
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FIGURE 1. - SHEET SPECIMENS USED FOR TENSILE TESTING OF COM-
POSITE PANELS AND ARC-SPRAYED SHEET. DIMENSIONS IN MM.

are the measured actual stress and fiber volume fraction,
The actual displacement value in the gauge section is

CROSSHEAD DISPLACEMENT. MM

FIGURE 2. - STRESS-DISPLACEMENT BEHAVIOR OF COMPOSITES
AND ARC-SPRAYED NIOBIUM TESTED AT 1600 K. THE APPLIED
STRESSES WERE NORMALIZED TO 33 FIBER VOLUME PERCENT.
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believed to be somewhat smaller than the calculated value due to deforma-
tion outside the gauge section. This implies that the stress increment in
the elastic region should be higher.

In Fig. 2, the niobium matrix material showed relatively low strength and
elastic deformation, but exhibited a longer plastic deformation region
than the W/Nb composites, with a nearly constant flow stress at 1600 K.
The ST300/Nb composites had larger elastic deformation, higher propor-
tional limit (opp), higher ultimate tensile strength (UTS) and a larger
fracture deformation than the 218/Nb composites. In the plastic region,
the composites exhibited smooth strain hardening with about a 100 MPa
increase from the proportional limit to the maximum stress. The compos-
ites also have a relatively long plastic deformation region between maxi-
mum stress and fracture. This behavior is believed indicative of good
bonding between the fiber and matrix. The op, and UTS for 218/Nb,
ST300/Nb and Nb are shown in Fig. 3 as functions of crosshead speed at

400
r

300

== >—ST300/Nb

200

(3]
[~
=
=
[Es]
E 100
7
= 80
2
= 70 -
60 — ————>Nb
/
//
50 |- 7
//
40 —
uTs
30 -

HE

| | | |
10 10" 103 102 1077 100
CROSSHEAD SPEED, MM/SEC

FIGURE 3. - UTS AND PROPORTIONAL LIMIT
AS A FUNCTION OF CROSSHEAD SPEED AT
1600 K. DATA POINTS FOR THE TENSILE
STRENGTH OF COMPOSITES ARE NORMALIZED
TO 33 FIBER VOLUME PERCENT.
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1600 K. The effect of crosshead speed on the tensile properties was con-
siderably high. At this high temperature, the tensile strength increased
by almost a factor of two as the crosshead speed increased.

The op;, and UTS for 218/Nb, ST300/Nb and Nb are shown in Fig. 4 as a
function of temperature. The tensile strength of the ST300/Nb composites
are observed to be substantially higher than the 218/Nb composites over the
entire temperature range. The UTS value of Nb at 1600 K is about 30 MPa.
Fiber reinforcements with 218 or ST300 tungsten increased the UTS to about
200 and 280 MPa, respectively.

Tensile Behavior of Tungsten Wires

The tensile strength of 218 and ST300 tungsten wires, as-drawn and elec-
tropolished, is shown in Fig. 5 as a function of temperature. The ST300
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FIGURE 4. - TEMPERATURE DEPENDENCY OF TENSILE STRENGTH
OF 218/Nb, ST300/Nb AND Nb, TESTED AT A CROSSHEAD
SPEED OF 8.5 x 107> mM/sec. DATA POINTS FOR THE TEN-
SILE STRENGTH OF COMPOSITES ARE NORMALIZED TO 33
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FIGURE 5. - TEMPERATURE DEPENDENCY OF TENSILE STRENGTH
OF 218 AND ST300 TUNGSTEN FIBER FROM [61. TESTED AT A
CROSSHEAD SPEED OF 8.5 x 107> MM/SEC.

tungsten wires showed higher tensile strength than the 218 tungsten wire,
especially below 1500 K. The tensile strength difference between the two
wires becomes smaller, as the testing temperature increased from 1500 to

1600 K.

Interaction Between Fiber and Matrix

Longitudinal and transverse sections of tensile tested specimens were exam-
ined metallographically. Transverse sections were cut perpendicular to the
fiber and the tensile load axis; longitudinal sections were cut parallel to
the fiber and the specimen face. Longitudinal sections were prepared by
polishing until the approximate center of the fiber in the middle layer of
the three fiber layer composite was evident. Figure 6 shows the results

of scanning electron microscopy of 218 and ST300/Nb ccmposites in the as-
fabricated condition and after tensile testing. Both 218 (Fig. 6(c)) and
ST300 fiber components (Fig. 6(d)) displayed considerable segmentation and
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FIGURE 6. - SEM PHOTOMICROGRAPHS OF 218/Nb ((a), (c)) AND ST300/Nb ((b), (d)) (LONGITUDINAL
SECTIONS), SHOWING THE DIFFERENT FIBER-MATRIX INTERACTION WITH THE EXPERIMENTAL CONDITIONS:
(3) AND (b) AS-FABRICATED CONDITION., (b) AND (d) AFTER TENSILE TESTING AT 1600 K AND
8.5x10° mMM/sEC.

a broadening of the fibrous grains after long-term (low strain rate) ten-
sile testing at 1600 K. In comparison, no segmentation of the fibrous
grains was evident after fabrication (Figs. 6(a) and (b)). Since these
recrystallization phenomena, segmentation and broadening of the fibrous
grains, were reported for the free wires tested at similar conditions

(Ref. 6), microstructural changes observed in the fibers in the composite
are not presumed to be directly caused by the presence of niobium. How-
ever, niobium diffusion into the fiber may have enhanced the recrystalliza-
tion kinetics near the fiber surface.

The tungsten fiber surface and the interface zone between tungsten and nio-
bium were revealed by etching for tungsten. The 218/Nb interface zone had
nearly the same fibrous grain structure as the bulk fiber but was severely
cracked during testing (Fig. 6(c)). The ST300/Nb interface zone did not
display severe cracking (Fig. 6(d)). The reason for the difference between
the two composites is not fully understood. This difference in interface
cracking tendency may be due to differences in wire fabrication techniques,
surface chemistry, surface roughness and composition. Ger=zrally., metallo-
graphic examination of transverse and longitudinal sections indicate that
the thickness of the interface zone increased as the testing temperature
increased and as the initial crosshead speed decreased. The thicknress of
the interface zone also appeared to be influenced by the same factors that
affected the interface cracking tendency. After tensile testing at 1600 K
at a crosshead speed of 8.5x10-% mm/sec, the interface zone in the 218/Nb
(Fig. 7(b)) was thicker than that in ST300/Nb (Fig. 7(a)). X-ray micro-
probe analysis was conducted on the transverse section of these two compos-
ites (Figs. 7(c) and (d)). However. the interdiffusional profiles of
tungsten and niobium suggest that the two tungsten fibers had the same
interface zone chemistry and the same relative depth into the matrix. The
difference in the composition profiles, if any, between the two composites

8
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interface zones likely occurs below the resolution range of the x-ray
microprobe. Since the high-temperature, long-term tensile tested specimens
showed a negligible interdiffusion depth (less that 4 um), other short-term
tensile tested specimens are assumed to have the same or less interdiffu-
sion. The effect of solid-solution strengthening in the niobium matrix or
weakening of the tungsten fiber induced by niobium would be too small to be
of consequence considering that only 3 percent of the fiber and matrix vol-
ume is affected.

The microstructures of the niobium matrix in the composite and in the arc
sprayed monolithic niobium sheet are shown in Fig. 8. Both showed homoge-
neous structures. In the composites, however, the grain size of the \b
adjacent to the fiber interface was much finer than the grain size of the
bulk Nb. [t is believed that this fine grain size is due to restricted
grain growth during the composite consolidation.

Composite Fracture Behavior

The reduction of area (RA) was measured on fractured tensile specimens.
Figure 9 shows the measured RA of 218/Nb, ST300/Nb, 218, ST300 and meno-
lithic Nb as a function of crosshead speed at 1600 X. In comparison to the
composite, the arc sprayed monolithic Nb showed a higher RA and a negative
strain rate dependency, i.e., a higher RA at the low crosshead speed than
at the high crosshead speed. The RA of composites with both types of fiber
decreased from 40 percent at high crosshead speeds to below 10 percent at
low crosshead speeds. The decrease of RA is attributed to embrittlement
and lower ductility of the fiber due to segmentation and broadening of
fibrous grain structures in the tungsten fiber. At 1300 to 1500 K the com-
posites also showed nearly a 40 percent RA. The RA behavior of the 218 and
ST300 wires (Ref. 6) shows similar behavior to that of the composites.

Figure 10 shows a fracture surface of 218/Nb and ST300/Nb composite tensile
specimens tested at a low crosshead speed at 1600 K. The longitudinal sec-
tions are shown in (a) and (b), and the corresponding fracture surfaces (c)
and (d). Both types of fiber exhibited brittle fracture without necking.
The longitudinal section of the ST300/Nb composite interface showed few
voids and no indication of delamination between fiber and matrix at frac-
ture. The interface of 218/Nb composite, however, exhibited numerous voids
and evidence of delamination between the fiber and matrix at fracture.

The fracture surface of the composite interface region was different, i.e.,

FIBER
MATRIX
| E—
©

FIGURE 8. - LIGHT MICROSCOPE GRAIN STRUCTURES OF ARC-SPRAYED AND HIPeD NIOBIUM (@), ARC-SPRAYED AND

HIPED ST300/Nb. LONGITUDINAL SECTION (b). AND TRANSVERSE SECTION (c).
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FIGURE 10. - COMPARISON OF FRACTURE MORPHOL-

OGY BETWEEN 218/Nb AND ST300/Nb. TENSILE
TESTED AT 1600 K AND 8.5x10™" mm/sec.

(3) LONGITUDINAL SECTION OF 218/Nb.
(b) LONGITUDINAL SECTION OF ST300/Nb.
(c) FRACTURE SURFACE OF 218/Nb.

(d) FRACTURE SURFACE OF ST300/Nb.
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the ST300/Nb interface exhibited a ductile facet fracture with some cracks
propagating through the matrix, whereas the 218/Nb interface appeared to
be brittle with cracks propagating along the interface.

Discussion

Deviation of Tensile Behavior from the Rule-of-Mixtures

With the known constituent tensile properties of the free fiber and mono-
lithic matrix, the composite tensile strength may be estimated using the
rule-of-mixtures (ROM) (Refs. 7 and 8):

oc = ofVf + opVp
Ve + Vp =1

where og, of, cy are the strengths of the composite (c), the fiber (f),
and the matrix (m) at a constant strain. The volume fraction of each com-
ponent is represented by V¢ and V, respectively. Figure 11 schemat-
ically shows the tensile curves of the matrix, composite, and fiber at a
constant temperature and demonstrates how the tensile stress (opp) of each
component is determined. The tensile behavior of the fiber and composite
are similar in terms of the yield point and the fracture point and differ
only in the amount of stress required. Yielding of the matrix in the W/Nb
composite system occurs earlier than that of the fiber and the composites
because of its smaller elastic region (Fig. 2). Since strain hardening of
niobium is negligible at temperatures of 1300 to 1600 K, we assume that
the value of the proportional limit of the matrix is equal to its stress
contribution at the composite yield point. Therefore, the value of the
proportional limit of the composite, opp, can now be calculated using the
following ROM relationship:

0
FIBER 1
ille o |hoomeo
PLE,
i 1 FIBER 2
0p|_ _____
Opl. . ke—eo
PLE,2
T COMPOSITE 1
(=]
0
3 Plc,q COMPOSITE 2
A g
§ Ple,2
MATRIX

1

Ew &€

STRAIN, €—

FIGURE 11. - SCHEMATIC STRESS-STRAIN CURVE OF MATRIX.
COMPOSITE AND FIBER FOR THE ROM CALCULATION.
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(opL)c = (opL)£VE + (opL)nVm (2)
where (opL)p is the matrix strength at a strain of (opp)f.

Temperature influence. The experimental and calculated opp, of the com-
posites as a function of temperature are shown in Fig. 12. The op for
218/Nb composites calculated using the ROM 1is in good agreement with the
measured values. The op[, deviation of the composites is defined as the
difference between the experimentally measured and the calculated opf,

(D = (opL)exp - (9PL)cal)- The deviation direction for the 218/Nb compos-
ites was affected by test temperature: at low temperatures the experimen-
tal value was higher (positive deviation) than the calculated, but at high
temperatures it was lower (negative deviation) than the calculated. The
experimentally determined op;, of ST300/Nb composites at 1500 and 1600 K
displayed a considerable positive deviation from the calculated values,
about 90 MPa at 1500 and about 70 MPa at 1600 K. A similar positive devia-
tion, about 130 MPa, was previously observed at 1366 K (Ref. 5).
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FIGURE 12. - DEVIATION OF COMPOSITE TENSILE STRENGTH
FROM THE ROM CALCULATION AS FUNCTIONS OF TEMPERATURE
AND FIBER COMPOSITION.
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Causes of ROM Deviations

Experimental variables. In order to understand the deviation from the

ROM calculations of the composite tensile properties, the extent of the
experimental errors was investigated. Voids and poor bonding in the inter-
face zone, fiber misalignment, and fiber breakage were not observed in this
system, and were not considered to be a source of error.

The constituent fiber tensile properties and fiber volume fraction are pos-
sible sources of error. Each composite sheet specimen examined contained
as many as 77 continuous fibers in the gauge section, and fluctuations in
the tensile properties of each fiber may cause an error. However, the ten-
sile strength of individual tungsten alloy fibers was found to have a
negligibly small fluctuation at high temperatures. For example, the scat-
ter range in tensile strength was about +15 MPa or about +4 percent for a
op, of 350 MPa at 1600 K for 10 randomly chosen ST300 samples from differ-
ent spools and winding positions within a spool. Table II shows the op,
values of the as-drawn ST300 wires. The scatter range in the tensile
strength of the 218 fiber was assumed to be equivalent to that of the ST300
fiber. A decrease in fiber tensile strength during the composite fabrica-
tion is discounted because of the relatively low fabrication temperatures
(Refs. 3 and 6) compared with the melting point of the fiber and the short
fabrication time at temperature.

The ROM calculations were made using composite fiber tensile properties
of electropolished as-drawn fibers. These fibers provided a fiber tensile
specimen with a 25.4 mm gauge section, equivalent to the composite speci-
mens, and were reported to have a tensile strength of 450 MPa at 1600 K,
about 100 MPa more than that of the unpolished as-drawn fibers (Ref. 6).
This difference would cause a negative deviation from the ROM of as much
as 32 MPa for a fiber volume fraction of 0.33, since the composites were
made using unpolished as-drawn wires.

Fluctuations in the fiber diameter may also affect the composite tensile
strength. The normalized composite tensile strength with respect to a con-
stant volume fraction was calculated, based on the simple linear relation-
ship of og = AVf (Refs. 8 and 9), where A is a constant, Vg the fiber

TABLE II. - FLUCTUATION OF THE %L, OF
ST300 WIRES (AS-DRAWN/UNPOLISHED) AT

1600 K AND AT 8.5x10-3 mm/sec

Spool Position | Wire diameter, IpL
number number um MPa
201 1 201 347 .8
2 201 330.3

3 198 334.6

4 203 353.6

5 198 348.6

110 1 193 3791
111 2 198 337.6
101 1 206 339.0
101 2 198 341.5
102 1 203 381.6




volume fraction, and o, the composite tensile strength. For instance,
for Vg = 0.33 with an error of 0.04 (V§ = Vg(1 - (d/dg)2), where Vi is
an error range at V¢ = 0.33, dg = 200 pm d = 187 to 213 um) due to the
fiber diameter variation, the normalized experimental value for composites
with o = 250 MPa could vary from 280 to 220 MPa. The error of 0.04 in

Vs results from the possible wire diameter fluctuation of +13 um on a

200 um nominal fiber diameter. The effect of possible errors in the devia-
tion is summarized in Table III. The summation of all errors accounted for
is about +3/-66 MPa. This error does not explain the observed positive
deviation (over 70 MPa) from the ROM predictions.

Fiber/matrix interaction. The deviation from the ROM may be partially
attributed to the rheological interaction and the chemical interdiffusion
which takes place between the fiber and the matrix. The formation of the
W-Nb alloy interface zone implies a effective constraining of fiber mate-
rials. Lee et al. (Ref. 9) reported that a finer grain size was found in
the W/Cu composite fabricated by the Cu infiltration process, and that this
fine grain size caused an increase in the matrix strength contribution.

On the other hand, the interdiffusion of niobium into the tungsten fiber
lowers the recrystallization temperature of the tungsten and results in a
reduction in fiber strength. Matrix strengthening or fiber strength degra-
dation would result in positive and negative deviations, respectively. In
order to better explain the deviation from the ROM, the oy and of

terms of the ROM were modified to incorporate residual stress, mean
stress, and interdiffusion-induced fiber degradation as follows:

(1) Residual Stress Effect: Due to the coefficient of thermal expansion
mismatch (6.8x107® for Nb and 4.3x10=6 K-1 for W at room temperature,
and 10.3x107% for Nb and 4.8x10-6 K-1 for W at 1500 K), an axial tensile
residual stress may form in the matrix near the fiber during the composite
fabrication and could cause some matrix yielding upon cool down to room
temperature (Ref. 3). This kind of positive residual stress has been
reported to lower the composite's flow stress (Ref. 10). High temperature
tensile testing results in an additional thermal cycle on the composite
specimens. The tensile strength was measured during a heating cycle, and
the microstructure was observed after cooling. It is known that a compres-
sive stress in the matrix near the fiber is formed when a composite with
this type of thermal expansion mismatch between the fiber and matrix is
heated after a cooling cycle (Refs. 11 and 12).

TABLE ITI. - ESTIMATED DEVIATIONS FROM THE ROM
CALCULATION FOR W/Nb COMPOSITES TESTED AT 1600 K

Error Error Effect on the deviation
source range, with Vg = 0.33,
MPa MPa
Fiber 15 4.5
strength
Electro- 100 32
polishing
Volume 30 30
fraction
of fiber
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If we make the assumption that the compressive residual stress is not fully
relaxed, the compressive stress may cause matrix yielding, and the amount
of negative plastic strain would increase with increasing temperature.
When loaded in tension under this condition for high temperature tensile
tests, the direction of the moving dislocations on a slip plane must
change, and this change requires a stress. This additional stress is a
function of the negative plastic strain, which is a negative creep strain
in the presence of a compressive stress at high temperatures for niobium.
This internal stress would cause a higher matrix contribution to the com-
posite tensile strength. This matrix contribution could be expected to
decrease with decreasing strain rate. As an analog, Arsenault et al.
(Ref. 13) reported that the compressive strength of SiCy/Al composites was
higher than the tensile strength because of a tensile residual stress upon
compressive loading at room temperature.

To matinematically modify the matrix stress contribution of the present com-
posites, the internal stress caused by the compressive residual stress and
the negative plastic strain were estimated. To change the flow direction
of dislocations, the necessary stress would be roughly the :low stress of
niobium. The niobium matrix strengthening, Aoy, is assumed to be a func-
tion of the residual compressive stress, i.e.,

Aoy = onp, tensile (3)

where op tensile 1s the tensile flow stress. In Table IV, the estimated
Aoy and the composite flow stress, og*, are recalculated by the equation,

oc* = (om, tensile + dom)(1 ~ V§) + ofVf (1)

The calculated Aop of niobium varied from 39 to 93 MPa, depending on the
flow stress. The contribution from Aoy resulted in a nearly doubled
matrix stress contribution. The corresponding og* appeared to be much
higher than o ®*P or ocROM | particularly for 218/Nb. On the other hand,
oc* for ST300/Nb was not high enough to explain the measured og®%P. The
calculated op* was nearly 40 MPa less than the experimental value, but
the oq* values were closer to experimental than were the values calcula-
ted without the stress contribution.

The modification of the ROM in terms of the simple compressive residual
stress does not appear adequate for both the 218/Nb and ST300/Nb

TABLE IV. - RESIDUAL STRESS EFFECT ON THE HIGH
TEMPERATURE TENSILE PROPERITIES AT INITIAL
CROSSHEAD SPEED OF 8.5x10-3 mm/sec

Material | Temper- | og®P, | ocROM, | Aoy, oc”
ature, MPa MPa MPa MPa
K

218/Nb 1300 278.0 265.8 92 .6 327 .8
1400 232.9 229.7 78.1 272.9

1500 174.2 187.9 59.9 227 .1
1600 150.3 158.0 38.7 183.9

ST300/Nb 1500 293.0 220.4 59.9 | 260.1
1600 252101 179.8 38.7 205.7
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composites. It would appear that a strong fiber is more effective for
matrix strengthening than a weak fiber, and that fiber strength has more
than a linear effect on matrix strengthening.

(2) Mean Stress Effect: In analyzing the effect of the mean stress on
matrix strengthening, the composite is assumed to be a system, in which the
niobium matrix possesses a hard second phase of tungsten fibers. When a
tensile load is applied at high temperatures, the niobium matrix deforms
plastically, while the tungsten fibers deform elastically. A moving dislo-
cation would be blocked by the fibers; that is, the deformation of niobium
would be impeded by the elastic response of the fibers. This impeding
stress to plastic flow was calculated by Brown et al. (Refs. 14 and 15).
Analysis of continuous tungsten-copper composites as a function of fiber
diameter (Ref. 4) shows that Brown's mean stress was higher than Orowan's
stress for relatively large diameter fibers (15 um).

In this study, niobium is strengthened by the mean stress, which is simply
proportional to fiber volume fraction and to the accumulated plastic strain
(Ref. 15). The niobium matrix strengthening term oy n 1is given by the

following relationship,
] i 2KeprGme (5)
Mo~ Ge - K(Gf - G)

where K is an accommodation factor between fiber and matrix, and ep 1s
the accumulated plastic strain or the work hardening parameter and is a
direct function of the elastic response of the fibers and the plastic
behavior of matrices. The continuous fiber component carries the applied
load due to its volume fraction, and the ROM may be modified by the
matrix strengthening term with oy  of Eq. (5), such that the composite
strength o;* 1is calculated using the following equation,

oc® = ofVf + op(1 - V§) + oy, m(1 - V§) (6)

A fiber with a higher yield point as depicted in Fig. 11 will result in a
higher plastic strain in the matrix than a fiber with a lower yield point
with the same fiber elastic modulus. This means the fiber with the higher
yield point will possess a higher ep. At the yield point of the compos-
ite, ep will be the elastic strain gifference between the fiber and
matrix,

(op)s  (opL)y
En 3 [ 2G, - 26 (7)

where A is a constant, which can depend upon possible strain relaxation
(Ref. 16), and Gf and Gp are the shear modulus of the fiber and matrix,
respectively. For instance, at 1600 K, oy , and ep can be roughly esti-
mated with K = 0.78 (Ref. 14) in Eq. (5) and A = 1 in Eq. (7) with no
strain relaxation. For this first approximation, the strain relaxation at
the low strain rate was neglected. In Table V the estimated values of ¢
and oM p and oc*, modified by the mean stress were summarized for both
composites. The work hardening parameter, ey, increases with increasing
op, of the fiber and results in a higher mean stress. This effect means
that a high mean stress will exist when the op; is raised by the higher
strength fiber. An increased strain rate caused a higher opj, in tungsten
fibers (Ref. 6), and the general positive deviation of ST300/Nb and 218/Nb
at high crosshead speed could-be caused by a high mean stress. The oc”
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TABLE V. - MEAN STRESS EFFECT ON THE ROM
AT 1600 K AND VARIOUS CROSSHEAD SPEEDS

Composite | Crosshead | oc®*P, | oy , | o | ocROM, £p
speed, MPa MPa MPa MPa mm/mm
mm/Ssec

218/Nb 8.5x10~2 | 180.1 45.3 | 211.2 | 180.6 8.1x10~4
8.5x10-% | 102.0 35.7 | 143.7 | 119.8 6.4x10~%

ST300/Nb 8.5x10-2 | 295.3 51.3 | 229.5 | 195.1 9.2x10~%

8.5x10~% | 160.4 38.0 | 151.0 | 125.5 6.8x10~+

was affected by the different mean stress at the various crosshead speeds:
i.e., 144 and 211 MPa for 218/Nb at low crosshead speeds and high crosshead
speeds, respectively. This increase of og* is again higher than the meas-
ured values of 102 and 180 MPa at low and high crosshead speeds, respec-
tively. The og* of ST300/Nb, 229 MPa at a high crosshead speed, is
higher than that of oCROM. 195 MPa, but still lower than that of the meas-
ured value of 295 MPa.

(3) Combined Stress Effect: Figure 13 illustrates the modified ROM cal-
culation for ST300/Nb composites at 1600 K, based on the matrix strengthen-
ing by both the residual stress effects and the mean stress effects.
assuming no stress relaxation occurs. The effect of the two-stresses were
included in the ROM calculation using Eqs. (4) and (6). At low crosshead
speeds the modified ROM calculation for the op;, of ST300/Nb composite
slightly exceeded the measured value, but at a high crosshead speed the
calculated values were still lower than the measured ones. The first
approximation for the residual and mean stress calculation is believed to
be overestimated, in particular at the low crosshead speeds, since the
accumulated stresses would probably relax in the Yb matrix at 1600 XK. The
increase in the calculated composite tensile strength at high crosshead
speeds is believed to be too high, because this would require that the
strength of the matrix increase from about 40 to 130 MPa (Fig. 13). Such

a large increase is not believed to be realistic.

Matrix strengthening alone does not explain the higher composite tensile
strength of the ST300/Nb. The interfacial bonding between fiber and matrix
may alter the strain on the fiber at the proportional limit as well as the
strain on the fiber at UTS. For example, a strong ductile fiber/matrix

bond would cause the composite to yield later than the free fiber (Fig. 11).

The delayed yielding of the composite (e.g., ST300/Nb) may possibly be due
to an increase in the proportional limit of the fiber caused by the passive
effect that the interface has in reducing imperfections in the fiber
surface.

Another possible cause of the delayed composite yielding may be differences
in the instantaneous strain behavior of the matrix and the fiber in the
composite. A larger degree of matrix deformation may result in greater
plastic fiber deformation in this case where the fiber/matrix bond is very
strong and ductile. The different amounts of deformation must be balanced
to get a homogeneous strain distribution across the fiber/matrix interface.
Composite yielding, then, may occur at a larger strain value than the free
fiber yield point, as in Fig. 11 where the free fiber yields at &7, but
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FIGURE 13. - CALCULATED 0, (EQS. (4) AND (6)) OF ST300/Nb
COMPOSITE AS A FUNCTIONDOF CROSSHEAD SPEED, BASED ON THE
RESIDUAL AND MEAN STRESSES IN THE Nb MATRIX AT 1600 K.

its composite yields at ep. This would appear to be fiber strengthening
because the fiber strength contribution at the composite yield point
appears higher than the op;, of the free fiber, i.e., op* instead of
opL,fz (Fig. 11). Hence, the importance of characterizing the very thin
interface zone is seen, but is, unfortunately, beyond the scope of this
study. The possible difference in quality of the diffusion bond between
the fiber and matrix due to different dispersoids in the two fibers may
also contribute to the observed deviation from the ROM. The difference
in the fiber/matrix bond may also depend on the fiber surface finish due

to drawing processes and cleaning procedures used during fiber fabrication.

Fiber degradation. Fiber degradation can result in composite strengths

lower than the ROM predictions (Ref. 8). This degradation can be caused

by the formation of an interface zone and matrix-element-induced weakening

of bulk fiber (e.g., niobium-induced tungsten-fiber recrystallization). A

slightly larger recrystallized interface zone was observed in the 218/Nb

than in the ST300/Nb composite. The interface zone is believed to possess
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a lower tensile strength than the tungsten fiber, and the cracked interface
observed in the 218/Nb composite could cause a premature failure of the
fiber component. These mechanisms could account for the lower fracture
strain of 218/Nb (about 10 percent) compared with ST300/Nb (about 14 per-
cent) at 1600 K as shown in Fig. 2.

Possible fiber degradation due to the presence of niobium in tungsten is
believed to be minor for these tensile tested specimens. Observed niobium
diffusion into the fiber beyond the interface zone was negligible, there-
fore, niobium-induced recrystallization did not occur throughout the tung-
sten fiber, only in the reaction zone. In addition, an interface zone
thickness of about 5 um is not expected to cause a significant strength
loss when compared to the original 200 um fiber diameter. The 5 um zone
results in a fiber diameter reduction from 200 to 190 um which can decrease
the fiber volume fraction from 0.33 to about 0.30. This change in fiber
volume fraction is within the error band originally calculated for the
fiber volume fraction.

Summary

A tensile tests was carried out on unidirectional tungsten fiber reinforced
niobium composites in the temperature range of 1300 to 1600 K and the
results are summarized below:

1. The ST300/Nb composites were stronger than the 218/Nb composites
over the entire range of temperatures.

2. The ST300/Nb composites were considerably stronger than ROM pre-
diction, whereas the tensile strength of the 218/Nb composites fell within
the calculated error of the ROM prediction.

3. The differences in the tensile behavior of the two types of compos-
ites relative to the ROM predictions is believed to be related to differ-
ences in the fiber-matrix interface zone for the two fibers.

4. The positive deviation from ROM predictions of ST300/Nb tensile
properties is believed to be due to the effects of both residual stresses
and Brown's mean stresses.

Conclusion

The measured tensile strengths of continuous fiber reinforced composites
can exceed predicted rule-of-mixture strengths in systems where the fibers
have high tensile yield strengths and strong ductile interfacial bonding
with the matrix. Further research is needed to fully understand and quan-
tify the observed positive deviations from ROM predictions.
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